{ "id": "1703.10595", "version": "v1", "published": "2017-03-30T17:46:11.000Z", "updated": "2017-03-30T17:46:11.000Z", "title": "Uniform quasiconvexity of the disc graphs in the curve graphs", "authors": [ "Kate M. Vokes" ], "comment": "8 pages, 3 figures", "categories": [ "math.GT" ], "abstract": "We give a proof that there exists a universal constant $K$ such that the disc graph associated to a surface $S$ forming a boundary component of a compact, orientable 3-manifold $M$ is $K$-quasiconvex in the curve graph of $S$. Our proof does not require the use of train tracks.", "revisions": [ { "version": "v1", "updated": "2017-03-30T17:46:11.000Z" } ], "analyses": { "subjects": [ "20F65", "57M99" ], "keywords": [ "curve graph", "disc graph", "uniform quasiconvexity", "boundary component", "universal constant" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }