arXiv Analytics

Sign in

arXiv:1703.06110 [astro-ph.GA]AbstractReferencesReviewsResources

High-redshift rotation curves and MOND

Mordehai Milgrom

Published 2017-03-17Version 1

Genzel et al. just published the rotation curves of six high-redshift disc galaxies ($z\sim 0.9-2.4$), which they find to be `baryon dominated' within the studies radii. While not up to the standard afforded by data available for analysis in the nearby Universe, these data are valuable in constraining cosmological evolution of either DM scenarios, or -- as I discuss here -- $z$-dependence of MOND. Indeed, these results, if taken at face value, teach us useful lessons in connection with MOND. a. The dynamical accelerations at the half-light radii, found by Genzel et al., are rather high compared with the MOND acceleration constant, as measured in the nearby Universe: $g(R_{1/2})= (3-11)a_0$. MOND then predicts fractions of `phantom matter' at $R_{1/2}$ of at most a few tens of percents, which, galaxy by galaxy, agree well with what Genzel et al. find. b. The asymptotic rotational speeds predicted by MOND from the baryonic-mass estimates of Genzel et al. are substantially lower ($0.55-0.75$) than the maximal speeds of the RCs. MOND thus predicts a substantial decline of the RCs beyond the maximum. This too is in line with what Genzel et al. find. c. The findings of Genzel et al. cast meaningful constraints on possible variation of $a_0$ with cosmic time. For example, they all but exclude a value of the MOND constant of $\sim 4a_0$ at $z\sim 2$.

Related articles: Most relevant | Search more
arXiv:1104.5483 [astro-ph.GA] (Published 2011-04-28, updated 2012-09-20)
Galaxy growth by merging in the nearby universe
arXiv:1011.4595 [astro-ph.GA] (Published 2010-11-20, updated 2011-08-16)
The signature of LLAGNs in the nearby universe
arXiv:1603.02042 [astro-ph.GA] (Published 2016-03-07)
Radio Astrometry towards the Nearby Universe with the SKA
Hiroshi Imai et al.