{ "id": "1702.05873", "version": "v1", "published": "2017-02-20T06:30:18.000Z", "updated": "2017-02-20T06:30:18.000Z", "title": "Characterization of 1-Tough Graphs using Factors", "authors": [ "M. Kano", "H. Lu" ], "categories": [ "math.CO" ], "abstract": "For a graph $G$, let $odd(G)$ and $\\omega(G)$ denote the number of odd components and the number of components of $G$, respectively. Then it is well-known that $G$ has a 1-factor if and only if $odd(G-S)\\le |S|$ for all $S\\subset V(G)$. Also it is clear that $odd(G-S) \\le \\omega(G-S)$. In this paper we characterize a 1-tough graph $G$, which satisfies $\\omega(G-S) \\le |S|$ for all $\\emptyset \\ne S \\subset V(G)$, using an $H$-factor of a set-valued function $H:V(G) \\to \\{ \\{1\\}, \\{0,2,4, \\ldots\\} \\}$. Moreover, we generalize this characterization to a graph that satisfies $\\omega(G-S) \\le f(S)$ for all $\\emptyset \\ne S \\subset V(G)$, where $f:V(G) \\to \\{1,3,5, \\ldots\\}$.", "revisions": [ { "version": "v1", "updated": "2017-02-20T06:30:18.000Z" } ], "analyses": { "keywords": [ "characterization", "odd components", "set-valued function" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }