{ "id": "1702.04708", "version": "v1", "published": "2017-02-15T18:36:31.000Z", "updated": "2017-02-15T18:36:31.000Z", "title": "On correlations between class numbers of imaginary quadratic fields", "authors": [ "Vinay Kumaraswamy" ], "categories": [ "math.NT" ], "abstract": "Let $h(-n)$ be the class number of the imaginary quadratic field with discriminant $-n$. We establish an asymtotic formula for correlations involving $h(-n)$ and $h(-n-l)$, over fundamental discriminants that avoid the congruence class $1\\pmod{8}$. Our result is uniform in the shift $l$, and the proof uses an identity of Gauss relating $h(-n)$ to representations of integers as sums of three squares. We also prove analogous results on correlations involving $r_Q(n)$, the number of representations of an integer $n$ by an integral positive definite quadratic form $Q$.", "revisions": [ { "version": "v1", "updated": "2017-02-15T18:36:31.000Z" } ], "analyses": { "keywords": [ "imaginary quadratic field", "class number", "correlations", "integral positive definite quadratic form", "congruence class" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }