{ "id": "1701.08853", "version": "v1", "published": "2017-01-30T22:12:55.000Z", "updated": "2017-01-30T22:12:55.000Z", "title": "Elementary equivalence vs commensurability for hyperbolic groups", "authors": [ "Vincent Guirardel", "Gilbert Levitt", "Rizos Sklinos" ], "comment": "19 pages", "categories": [ "math.GR", "math.LO" ], "abstract": "We study to what extent torsion-free (Gromov)-hyperbolic groups are elementarily equivalent to their finite index subgroups. In particular, we prove that a hyperbolic limit group either is a free product of cyclic groups and surface groups, or admits infinitely many subgroups of finite index which are pairwise non elementarily equivalent.", "revisions": [ { "version": "v1", "updated": "2017-01-30T22:12:55.000Z" } ], "analyses": { "subjects": [ "20F65", "20F70", "20F67" ], "keywords": [ "hyperbolic groups", "elementary equivalence", "commensurability", "finite index subgroups", "hyperbolic limit group" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }