{ "id": "1611.10239", "version": "v1", "published": "2016-11-30T16:01:52.000Z", "updated": "2016-11-30T16:01:52.000Z", "title": "Defective 2-colorings of planar graphs without 4-cycles and 5-cycles", "authors": [ "Pongpat Sittitrai", "Kittikorn Nakprasit" ], "categories": [ "math.CO" ], "abstract": "Let $G$ be a graph without 4-cycles and 5-cycles. We show that the problem to determine whether $G$ is $(0,k)$-colorable is NP-complete for each positive integer $k.$ Moreover, we construct non-$(1,k)$-colorable planar graphs without 4-cycles and 5-cycles for each positive integer $k.$ Finally, we prove that $G$ is $(d_1,d_2)$-colorable where $(d_1,d_2)=(4,4), (3,5),$ and $(2,9).$", "revisions": [ { "version": "v1", "updated": "2016-11-30T16:01:52.000Z" } ], "analyses": { "subjects": [ "05C15", "G.2.2" ], "keywords": [ "positive integer", "colorable planar graphs", "np-complete" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }