{ "id": "1611.03302", "version": "v1", "published": "2016-11-10T14:00:43.000Z", "updated": "2016-11-10T14:00:43.000Z", "title": "The number of subgroups of the group $\\Bbb{Z}_m\\times \\Bbb{Z}_n \\times \\Bbb{Z}_r \\times \\Bbb{Z}_s$", "authors": [ "László Tóth" ], "comment": "13 pages, tables", "categories": [ "math.GR", "math.CO", "math.NT" ], "abstract": "We deduce direct formulas for the total number of subgroups and the number of subgroups of a given order of the group $\\Bbb{Z}_m\\times \\Bbb{Z}_n \\times \\Bbb{Z}_r \\times \\Bbb{Z}_s$, where $m,n,r,s\\in \\Bbb{N}$. The proofs are by some simple group theoretical and number theoretical arguments based on Goursat's lemma for groups. Two conjectures are also formulated.", "revisions": [ { "version": "v1", "updated": "2016-11-10T14:00:43.000Z" } ], "analyses": { "subjects": [ "20K01", "20K27", "11A25", "11Y70" ], "keywords": [ "deduce direct formulas", "total number", "number theoretical arguments", "goursats lemma", "conjectures" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }