{ "id": "1611.02501", "version": "v1", "published": "2016-11-08T12:47:14.000Z", "updated": "2016-11-08T12:47:14.000Z", "title": "The Probability of Generating the Symmetric Group", "authors": [ "Stefan-Christoph Virchow" ], "categories": [ "math.GR" ], "abstract": "We give a new proof of Dixon's conjecture: The probability that a pair of random permutations generates either $A_n$ or $S_n$ is $1-1/n+\\mathcal {O}(n^{-\\frac{3}{2}+\\epsilon})$. Our proof is based on character theory and character estimates and does not need the classification of the finite simple groups.", "revisions": [ { "version": "v1", "updated": "2016-11-08T12:47:14.000Z" } ], "analyses": { "subjects": [ "20B30", "20C15" ], "keywords": [ "symmetric group", "probability", "finite simple groups", "random permutations generates", "dixons conjecture" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }