{ "id": "1610.00198", "version": "v1", "published": "2016-10-01T22:04:54.000Z", "updated": "2016-10-01T22:04:54.000Z", "title": "Expected Depth of Random Walks on Groups", "authors": [ "Khalid bou-Rabee", "Ioan Manolescu", "Aglaia Myropolska" ], "comment": "14 pages", "categories": [ "math.GR", "math.PR" ], "abstract": "For $G$ a finitely generated group and $g \\in G$, we say $g$ is detected by a normal subgroup $N \\lhd G$ if $g \\notin N$. The depth $D_G(g)$ of $g$ is the lowest index of a normal, finite index subgroup $N$ that detects $g$. In this paper we study the expected depth, $\\mathbb E[D_G(X_n)]$, where $X_n$ is a random walk on $G$. We give several criteria that imply that $$\\mathbb E[D_G(X_n)] \\xrightarrow[n\\to \\infty]{} 2 + \\sum_{k \\geq 2}\\frac{1}{[G:\\Lambda_k]}\\, ,$$ where $\\Lambda_k$ is the intersection of all normal subgroups of index at most $k$. We explain how the right-hand side above appears as a natural limit and also give an example where the convergence does not hold.", "revisions": [ { "version": "v1", "updated": "2016-10-01T22:04:54.000Z" } ], "analyses": { "subjects": [ "20F65" ], "keywords": [ "random walk", "expected depth", "normal subgroup", "finite index subgroup", "lowest index" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }