{ "id": "1609.04874", "version": "v1", "published": "2016-09-15T22:21:19.000Z", "updated": "2016-09-15T22:21:19.000Z", "title": "Finiteness of Homological Filling Functions", "authors": [ "Joshua W. Fleming", "Eduardo Martínez-Pedroza" ], "categories": [ "math.GR" ], "abstract": "Let $G$ be a group. For any $\\mathbb{Z} G$--module $M$ and any integer $d>0$, we define a function $FV_{M}^{d+1}\\colon \\mathbb{N} \\to \\mathbb{N} \\cup \\{\\infty\\}$ generalizing the notion of $(d+1)$--dimensional filling function of a group. We prove that this function takes only finite values if $M$ is of type $FP_{d+1}$ and $d>0$, and remark that the asymptotic growth class of this function is an invariant of $M$. In the particular case that $G$ is a group of type $FP_{d+1}$, our main result implies that its $(d+1)$-dimensional homological filling function takes only finite values, addressing a question from [12].", "revisions": [ { "version": "v1", "updated": "2016-09-15T22:21:19.000Z" } ], "analyses": { "subjects": [ "20F65", "20J05" ], "keywords": [ "finite values", "finiteness", "asymptotic growth class", "main result implies", "dimensional filling function" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }