{ "id": "1608.07350", "version": "v1", "published": "2016-08-26T02:13:58.000Z", "updated": "2016-08-26T02:13:58.000Z", "title": "Extensions of local fields and elementary symmetric polynomials", "authors": [ "Kevin Keating" ], "comment": "17 pages", "categories": [ "math.NT" ], "abstract": "Let $K$ be a local field whose residue field has characteristic $p$ and let $L/K$ be a finite separable totally ramified extension of degree $n=up^{\\nu}$. Let $\\sigma_1,\\dots,\\sigma_n$ denote the $K$-embeddings of $L$ into a separable closure $K^{sep}$ of $K$. For $1\\le h\\le n$ let $e_h(X_1,\\dots,X_n)$ denote the $h$th elementary symmetric polynomial in $n$ variables, and for $\\alpha\\in L$ set $E_h(\\alpha) =e_h(\\sigma_1(\\alpha),\\dots,\\sigma_n(\\alpha))$. Set $j=\\min\\{v_p(h),\\nu\\}$. We show that for $r\\in\\mathbb{Z}$ we have $E_h(\\mathcal{M}_L^r)\\subset \\mathcal{M}_K^{\\lceil(i_j+hr)/n\\rceil}$, where $i_j$ is the $j$th index of inseparability of $L/K$. In certain cases we also show that $E_h(\\mathcal{M}_L^r)$ is not contained in any higher power of $\\mathcal{M}_K$.", "revisions": [ { "version": "v1", "updated": "2016-08-26T02:13:58.000Z" } ], "analyses": { "subjects": [ "11S15" ], "keywords": [ "local field", "th elementary symmetric polynomial", "higher power", "residue field", "finite separable totally ramified extension" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }