{ "id": "1608.00158", "version": "v1", "published": "2016-07-30T19:41:50.000Z", "updated": "2016-07-30T19:41:50.000Z", "title": "Some relations on Fourier coefficients of degree 2 Siegel forms of arbitrary level", "authors": [ "Lynne H. Walling" ], "categories": [ "math.NT" ], "abstract": "We extend some recent work of D. McCarthy, proving relations among some Fourier coefficients of a degree 2 Siegel modular form $F$ with arbitrary level and character, provided there are some primes $q$ so that $F$ is an eigenform for the Hecke operators $T(q)$ and $T_1(q^2)$.", "revisions": [ { "version": "v1", "updated": "2016-07-30T19:41:50.000Z" } ], "analyses": { "keywords": [ "arbitrary level", "fourier coefficients", "siegel forms", "siegel modular form", "hecke operators" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }