{ "id": "1607.06456", "version": "v1", "published": "2016-07-21T18:18:43.000Z", "updated": "2016-07-21T18:18:43.000Z", "title": "Bounds on the number of conjugacy classes of the symmetric and alternating groups", "authors": [ "Bret Benesh", "Cong Tuan Son Van" ], "comment": "3 pages", "categories": [ "math.GR" ], "abstract": "Let $G$ be a finite group with Sylow subgroups $P_1,\\ldots,P_n$, and let $k(G)$ denote the number of conjugacy classes of $G$. Pyber asked if $k(G) \\leq \\prod_{i=1}^n k(P_i)$ for all finite groups $G$. With the help of GAP, we prove that Pyber's inequality holds for all symmetric and alternating groups.", "revisions": [ { "version": "v1", "updated": "2016-07-21T18:18:43.000Z" } ], "analyses": { "subjects": [ "20B30", "20E45" ], "keywords": [ "conjugacy classes", "alternating groups", "finite group", "pybers inequality holds", "sylow subgroups" ], "note": { "typesetting": "TeX", "pages": 3, "language": "en", "license": "arXiv", "status": "editable" } } }