{ "id": "1607.00709", "version": "v1", "published": "2016-07-04T00:38:32.000Z", "updated": "2016-07-04T00:38:32.000Z", "title": "New computations of the Riemann zeta function on the critical line", "authors": [ "Jonathan W. Bober", "Ghaith A. Hiary" ], "comment": "26 pages", "categories": [ "math.NT", "math.NA" ], "abstract": "We present highlights of computations of the Riemann zeta function around large values and high zeros. The main new ingredient in these computations is an implementation of the second author's fast algorithm for numerically evaluating quadratic exponential sums. In addition, we use a new simple multi-evaluation method to compute the zeta function in a very small range at little more than the cost of evaluation at a single point.", "revisions": [ { "version": "v1", "updated": "2016-07-04T00:38:32.000Z" } ], "analyses": { "subjects": [ "11Y35" ], "keywords": [ "riemann zeta function", "critical line", "computations", "second authors fast algorithm", "numerically evaluating quadratic exponential sums" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable" } } }