{ "id": "1606.05886", "version": "v1", "published": "2016-06-19T16:34:46.000Z", "updated": "2016-06-19T16:34:46.000Z", "title": "Hamiltonian stationary Lagrangian fibrations", "authors": [ "Eveline Legendre", "Yann Rollin" ], "categories": [ "math.DG" ], "abstract": "Hamiltonian stationary Lagrangian submanifolds (HSLAG) are a natural generalization of special Lagrangian manifolds (SLAG). The latter only make sense on Calabi-Yau manifolds whereas the former are defined for any almost K\\\"ahler manifold. Special Lagrangians, and, more specificaly, fibrations by special Lagrangians play an important role in the context of the geometric mirror symmetry conjecture. However, these objects are rather scarce in nature. On the contrary, we show that HSLAG submanifolds, or fibrations, arise quite often. Many examples of HSLAG fibrations are provided by toric K\\\"ah-ler geometry. In this paper, we obtain a large class of examples by deforming the toric metrics into non toric almost K\\\"ahler metrics, together with HSLAG submanifolds.", "revisions": [ { "version": "v1", "updated": "2016-06-19T16:34:46.000Z" } ], "analyses": { "keywords": [ "hamiltonian stationary lagrangian fibrations", "hslag submanifolds", "hamiltonian stationary lagrangian submanifolds", "geometric mirror symmetry conjecture", "special lagrangian manifolds" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }