{ "id": "1605.02478", "version": "v1", "published": "2016-05-09T08:54:14.000Z", "updated": "2016-05-09T08:54:14.000Z", "title": "Square-full polynomials in short intervals and in arithmetic progressions", "authors": [ "Edva Roditty-Gershon" ], "categories": [ "math.NT" ], "abstract": "We study the variance of sums of the indicator function of square-full polynomials in both arithmetic progressions and short intervals. Our work is in the context of the ring $F_{q}[T]$ of polynomials over a finite field $F_{q}$ of $q$ elements, in the limit $q\\rightarrow\\infty$. We use a recent equidistribution result due to N. Katz to express these variances in terms of triple matrix integrals over the unitary group, and evaluate them.", "revisions": [ { "version": "v1", "updated": "2016-05-09T08:54:14.000Z" } ], "analyses": { "keywords": [ "short intervals", "arithmetic progressions", "square-full polynomials", "triple matrix integrals", "finite field" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }