{ "id": "1604.07774", "version": "v1", "published": "2016-04-26T18:02:49.000Z", "updated": "2016-04-26T18:02:49.000Z", "title": "Eta quotients, Eisenstein series and Elliptic Curves", "authors": [ "Ayse Alaca", "Saban Alaca", "Zafer Selcuk Aygin" ], "categories": [ "math.NT" ], "abstract": "We express all the newforms of weight $2$ and levels $30$, $33$, $35$, $38$, $40$, $42$, $44$, $45$ as linear combinations of eta quotients and Eisenstein series, and list their corresponding strong Weil curves. Let $p$ denote a prime and $E (\\zz_p)$ denote the the group of algebraic points of an elliptic curve $E$ over $\\zz_p$. We give a generating function for the order of $E (\\zz_p)$ for certain strong Weil curves in terms of eta quotients and Eisenstein series. We then use our generating functions to deduce congruence relations for the order of $E (\\zz_p)$ for those strong Weil curves.", "revisions": [ { "version": "v1", "updated": "2016-04-26T18:02:49.000Z" } ], "analyses": { "subjects": [ "11F11", "11F20", "11F30", "11G07", "11Y35", "14H52" ], "keywords": [ "eisenstein series", "eta quotients", "elliptic curve", "corresponding strong weil curves", "generating function" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160407774A" } } }