{ "id": "1604.04508", "version": "v1", "published": "2016-04-15T13:53:26.000Z", "updated": "2016-04-15T13:53:26.000Z", "title": "On the average value of the least common multiple of $k$ positive integers", "authors": [ "Titus Hilberdink", "László Tóth" ], "comment": "11 pages", "categories": [ "math.NT" ], "abstract": "We deduce an asymptotic formula with error term for the sum $\\sum_{n_1,\\ldots,n_k \\le x} f([n_1,\\ldots, n_k])$, where $[n_1,\\ldots, n_k]$ stands for the least common multiple of the positive integers $n_1,\\ldots, n_k$ ($k\\ge 2$) and $f$ belongs to a large class of multiplicative arithmetic functions, including, among others, the functions $f(n)=n^r$, $\\varphi(n)^r$, $\\sigma(n)^r$ ($r>-1$ real), where $\\varphi$ is Euler's totient function and $\\sigma$ is the sum-of-divisors function. The proof is by elementary arguments, using the extension of the convolution method for arithmetic functions of several variables, starting with the observation that given a multiplicative function $f$, the function of $k$ variables $f([n_1,\\ldots,n_k])$ is multiplicative.", "revisions": [ { "version": "v1", "updated": "2016-04-15T13:53:26.000Z" } ], "analyses": { "subjects": [ "11A05", "11A25", "11N37" ], "keywords": [ "common multiple", "positive integers", "average value", "eulers totient function", "multiplicative arithmetic functions" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160404508H" } } }