{ "id": "1604.03294", "version": "v1", "published": "2016-04-12T08:26:34.000Z", "updated": "2016-04-12T08:26:34.000Z", "title": "Existence of groundstates for a class of nonlinear Choquard equations in the plane", "authors": [ "Luca Battaglia", "Jean Van Schaftingen" ], "comment": "14 pages", "categories": [ "math.AP" ], "abstract": "We prove the existence of a nontrivial groundstate solution for the class of nonlinear Choquard equation $$ -\\Delta u+u=(I_\\alpha*F(u))F'(u)\\qquad\\text{in }\\mathbb{R}^2, $$ where $I_\\alpha$ is the Riesz potential of order $\\alpha$ on the plane $\\mathbb{R}^2$ under general nontriviality, growth and subcriticality on the nonlinearity $F \\in C (\\mathbb{R},\\mathbb{R})$.", "revisions": [ { "version": "v1", "updated": "2016-04-12T08:26:34.000Z" } ], "analyses": { "subjects": [ "35J91", "35J20" ], "keywords": [ "nonlinear choquard equation", "nontrivial groundstate solution", "riesz potential", "general nontriviality", "nonlinearity" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160403294B" } } }