{ "id": "1510.07186", "version": "v1", "published": "2015-10-24T21:09:05.000Z", "updated": "2015-10-24T21:09:05.000Z", "title": "Spectral bounds for the $k$-independence number of a graph", "authors": [ "Aida Abiad", "Sebastian Cioabă", "Michael Tait" ], "categories": [ "math.CO" ], "abstract": "In this paper, we obtain two spectral upper bounds for the $k$-independence number of a graph which is is the maximum size of a set of vertices at pairwise distance greater than $k$. We construct graphs that attain equality for our first bound and show that our second bound compares favorably to previous bounds on the $k$-independence number.", "revisions": [ { "version": "v1", "updated": "2015-10-24T21:09:05.000Z" } ], "analyses": { "keywords": [ "independence number", "spectral bounds", "spectral upper bounds", "second bound", "first bound" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv151007186A" } } }