arXiv Analytics

Sign in

arXiv:1510.05259 [astro-ph.GA]AbstractReferencesReviewsResources

Modelling the formation of the circumnuclear ring in the Galactic centre

Michela Mapelli, Alessandro A. Trani

Published 2015-10-18Version 1

Several thousand solar masses of molecular, atomic and ionized gas lie in the innermost ~10 pc of our Galaxy. The most relevant structure of molecular gas is the circumnuclear ring (CNR), a dense and clumpy ring surrounding the supermassive black hole (SMBH), with a radius of ~2 pc. We propose that the CNR formed through the tidal disruption of a molecular cloud, and we investigate this scenario by means of N-body smoothed-particle hydrodynamics simulations. We ran a grid of simulations with different cloud mass (4X10^4, 1.3X10^5 solar masses), different initial orbital velocity (v_in=0.2-0.5 v_esc, where v_esc is the escape velocity from the SMBH), and different impact parameter (b=8, 26 pc). The disruption of the molecular cloud leads to the formation of very dense and clumpy gas rings, containing most of the initial cloud mass. If the initial orbital velocity of the cloud is sufficiently low (v_in<0.4 v_esc, for b=26 pc) or the impact parameter is sufficiently small (b<10 pc, for v_in>0.5 v_esc), at least two rings form around the SMBH: an inner ring (with radius ~0.4 pc) and an outer ring (with radius ~2-4 pc). The inner ring forms from low-angular momentum material that engulfs the SMBH during the first periapsis passage, while the outer ring forms later, during the subsequent periapsis passages of the disrupted cloud. The inner and outer rings are misaligned by ~24 degrees, because they form from different gas streamers, which are affected by the SMBH gravitational focusing in different ways. The outer ring matches several properties (mass, rotation velocity, temperature, clumpiness) of the CNR in our Galactic centre. We speculate that the inner ring might account for the neutral gas observed in the central cavity.

Comments: 10 pages, 8 figures, 2 tables, accepted for publication in Astronomy and Astrophysics
Categories: astro-ph.GA
Related articles: Most relevant | Search more
arXiv:1112.6249 [astro-ph.GA] (Published 2011-12-29)
The Galactic Centre - A Laboratory for Starburst Galaxies (?)
arXiv:1704.03572 [astro-ph.GA] (Published 2017-04-11)
Star formation rates and efficiencies in the Galactic Centre
arXiv:1002.2364 [astro-ph.GA] (Published 2010-02-11)
Locating the VHE source in the Galactic Centre with milli-arcsecond accuracy