{ "id": "1510.00812", "version": "v1", "published": "2015-10-03T12:59:25.000Z", "updated": "2015-10-03T12:59:25.000Z", "title": "Exact additive complements", "authors": [ "Imre Z. Ruzsa" ], "categories": [ "math.NT" ], "abstract": "Let $A,B$ be sets of positive integers such that $A+B$ contains all but finitely many positive integers. S\\'ark\\\"ozy and Szemer\\'edi proved that if $ A(x)B(x)/x \\to 1$, then $A(x)B(x)-x \\to \\infty $. Chen and Fang considerably improved S\\'ark\\\"ozy and Szemer\\'edi's bound. We further improve their estimate and show by an example that our result is nearly best possible.", "revisions": [ { "version": "v1", "updated": "2015-10-03T12:59:25.000Z" } ], "analyses": { "subjects": [ "11B13", "11B34" ], "keywords": [ "exact additive complements", "positive integers", "szemeredis bound" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }