{ "id": "1509.00256", "version": "v1", "published": "2015-09-01T12:26:28.000Z", "updated": "2015-09-01T12:26:28.000Z", "title": "On the joint behaviour of speed and entropy of random walks on groups", "authors": [ "Gideon Amir" ], "comment": "12 pages", "categories": [ "math.GR", "math.PR" ], "abstract": "For every $3/4\\le \\delta, \\beta< 1$ satisfying $\\delta\\leq \\beta < \\frac{1+\\delta}{2}$ we construct a finitely generated group $\\Gamma$ and a (symmetric, finitely supported) random walk $X_n$ on $\\Gamma$ so that its expected distance from its starting point satisfies $E|X_n|\\asymp n^{\\beta}$ and its entropy satisfies $H(X_n)\\asymp n^\\delta$. In fact, the speed and entropy can be set precisely to equal any two nice enough prescribed functions $f,h$ up to a constant factor as long as the functions satisfy the relation $n^{\\frac{3}{4}}\\leq h(n)\\leq f(n)\\leq \\sqrt{{nh(n)}/{\\log (n+1)}}\\leq n^\\gamma$ for some $\\gamma<1$.", "revisions": [ { "version": "v1", "updated": "2015-09-01T12:26:28.000Z" } ], "analyses": { "subjects": [ "05C81", "20E08", "20F65", "60B15" ], "keywords": [ "random walk", "joint behaviour", "entropy satisfies", "constant factor", "functions satisfy" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }