{ "id": "1507.07672", "version": "v1", "published": "2015-07-28T07:52:07.000Z", "updated": "2015-07-28T07:52:07.000Z", "title": "If $(A+A)/(A+A)$ is small then the ratio set is large", "authors": [ "Oliver Roche-Newton" ], "comment": "21 pages, 2 figures", "categories": [ "math.CO", "math.NT" ], "abstract": "In this paper, we consider the sum-product problem of obtaining lower bounds for the size of the set $$\\frac{A+A}{A+A}:=\\left \\{ \\frac{a+b}{c+d} : a,b,c,d \\in A, c+d \\neq 0 \\right\\},$$ for an arbitrary finite set $A$ of real numbers. The main result is the bound $$\\left| \\frac{A+A}{A+A} \\right| \\gg \\frac{|A|^{2+\\frac{1}{15}}}{|A:A|^{\\frac{1}{30}}\\log |A|},$$ where $A:A$ denotes the ratio set of $A$. This improves on a result of Balog and the author (arXiv:1402.5775), provided that the size of the ratio set is subquadratic in $|A|$. That is, we establish that the inequality $$\\left| \\frac{A+A}{A+A} \\right| \\ll |A|^{2} \\Rightarrow |A:A| \\gg \\frac{ |A|^2}{\\log^{30}|A|} . $$ This extremal result answers a question similar to some conjectures in a recent paper of the author and Zhelezov (arXiv:1410.1156).", "revisions": [ { "version": "v1", "updated": "2015-07-28T07:52:07.000Z" } ], "analyses": { "subjects": [ "11B30", "11B75", "52C10" ], "keywords": [ "ratio set", "arbitrary finite set", "extremal result answers", "question similar", "real numbers" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150707672R" } } }