{ "id": "1507.01340", "version": "v1", "published": "2015-07-06T07:39:04.000Z", "updated": "2015-07-06T07:39:04.000Z", "title": "Zeroes of partial sums of the zeta-function", "authors": [ "David J. Platt", "Timothy S. Trudgian" ], "comment": "6 Pages", "categories": [ "math.NT" ], "abstract": "This article considers the positive integers $N$ for which $\\zeta_{N}(s) = \\sum_{n=1}^{N} n^{-s}$ has zeroes in the half-plane $\\Re(s)>1$. Building on earlier results, we show that there are no zeroes for $1\\leq N\\leq 18$ and for $N=20, 21, 28$. For all other $N$ there are infinitely many zeroes.", "revisions": [ { "version": "v1", "updated": "2015-07-06T07:39:04.000Z" } ], "analyses": { "subjects": [ "11M06", "11Y35" ], "keywords": [ "partial sums", "zeta-function", "earlier results" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150701340P" } } }