{ "id": "1504.00273", "version": "v1", "published": "2015-04-01T15:52:21.000Z", "updated": "2015-04-01T15:52:21.000Z", "title": "On Alternating and Symmetric Groups Which Are Quasi OD-Characterizabile", "authors": [ "Ali Reza Moghaddamfar" ], "categories": [ "math.GR" ], "abstract": "Let $\\Gamma(G)$ be the prime graph associated with a finite group $G$ and $D(G)$ be the degree pattern of $G$. A finite group $G$ is said to be $k$-fold OD-characterizable if there exist exactly $k$ non-isomorphic groups $H$ such that $|H|=|G|$ and $D(H)=D(G)$. The purpose of this article is twofold. First, it shows that the symmetric group $S_{27}$ is $38$-fold OD-charaterizable. Second, it shows that there exist many infinite families of alternating and symmetric groups, $\\{A_n\\}$ and $\\{S_n\\}$, which are $k$-fold OD-characterizable with $k>3$.", "revisions": [ { "version": "v1", "updated": "2015-04-01T15:52:21.000Z" } ], "analyses": { "keywords": [ "symmetric group", "quasi od-characterizabile", "finite group", "alternating", "fold od-characterizable" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150400273M" } } }