{ "id": "1503.05729", "version": "v1", "published": "2015-03-19T12:09:04.000Z", "updated": "2015-03-19T12:09:04.000Z", "title": "Altered local uniformization of Berkovich spaces", "authors": [ "Michael Temkin" ], "comment": "9 pages, first version, comments are welcome", "categories": [ "math.AG" ], "abstract": "We prove that for any compact quasi-smooth strictly $k$-analytic space $X$ there exist a finite extension $l/k$ and a quasi-\\'etale covering $X'\\to X\\otimes_kl$ such that $X'$ possesses a strictly semistable formal model. This extends a theorem of U. Hartl to the case of the ground field with a non-discrete valuation.", "revisions": [ { "version": "v1", "updated": "2015-03-19T12:09:04.000Z" } ], "analyses": { "keywords": [ "altered local uniformization", "berkovich spaces", "analytic space", "compact quasi-smooth", "finite extension" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }