{ "id": "1503.04046", "version": "v1", "published": "2015-03-13T13:04:34.000Z", "updated": "2015-03-13T13:04:34.000Z", "title": "Finite groups have more conjugacy classes", "authors": [ "Barbara Baumeister", "Attila MarĂ³ti", "Hung P. Tong-Viet" ], "categories": [ "math.GR" ], "abstract": "We prove that for every $\\epsilon > 0$ there exists a $\\delta > 0$ so that every group of order $n \\geq 3$ has at least $\\delta \\log_{2} n/{(\\log_{2} \\log_{2} n)}^{3+\\epsilon}$ conjugacy classes. This sharpens earlier results of Pyber and Keller. Bertram speculates whether it is true that every finite group of order $n$ has more than $\\log_{3}n$ conjugacy classes. We answer Bertram's question in the affirmative for groups with a trivial solvable radical.", "revisions": [ { "version": "v1", "updated": "2015-03-13T13:04:34.000Z" } ], "analyses": { "subjects": [ "20E45", "20D06", "20P99" ], "keywords": [ "conjugacy classes", "finite group", "sharpens earlier results", "answer bertrams question", "bertram speculates" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }