{ "id": "1502.05579", "version": "v1", "published": "2015-02-19T14:19:06.000Z", "updated": "2015-02-19T14:19:06.000Z", "title": "Equilibria of point-vortices on closed surfaces", "authors": [ "Teresa D'Aprile", "Pierpaolo Esposito" ], "comment": "27 pages", "categories": [ "math.AP" ], "abstract": "We discuss the existence of equilibrium configurations for the Hamiltonian point-vortex model on a closed surface $\\Sigma$. The topological properties of $\\Sigma$ determine the occurrence of three distinct situations, corresponding to $\\mathbb{S}^2$, to $\\mathbb{RP}^2$ and to $\\Sigma \\not=\\mathbb{S}^2,\\mathbb{RP}^2$. As a by-product, we also obtain new existence results for the singular mean-field equation with exponential nonlinearity.", "revisions": [ { "version": "v1", "updated": "2015-02-19T14:19:06.000Z" } ], "analyses": { "subjects": [ "35Q35", "35J61", "35J20", "76B47" ], "keywords": [ "closed surface", "point-vortices", "hamiltonian point-vortex model", "singular mean-field equation", "distinct situations" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable" } } }