{ "id": "1502.04619", "version": "v1", "published": "2015-02-13T03:22:08.000Z", "updated": "2015-02-13T03:22:08.000Z", "title": "Tetraquark state candidates: $Y(4140)$, $Y(4274)$ and $X(4350)$", "authors": [ "Zhi-Gang Wang", "Ye-Fan Tian" ], "comment": "15 pages, 12 figures. arXiv admin note: substantial text overlap with arXiv:1312.1537, arXiv:1403.0810; text overlap with arXiv:1502.00279", "journal": "Int.J.Mod.Phys.A30(2015)1550004", "doi": "10.1142/S0217751X15500049", "categories": [ "hep-ph" ], "abstract": "In this article, we tentatively assign the $Y(4140)$, $Y(4274)$ and $X(4350)$ to be the scalar and tensor $cs\\bar{c}\\bar{s}$ tetraquark states, respectively, and study them with the QCD sum rules. In the operator product expansion, we take into account the vacuum condensates up to dimension-10. In calculations, we use the formula $\\mu=\\sqrt{M^2_{X/Y/Z}-(2{\\mathbb{M}}_c)^2}$ to determine the energy scales of the QCD spectral densities. The numerical results favor assigning the $Y(4140)$ to be the $J^{PC}=2^{++}$ diquark-antidiquark type tetraquark state, and disfavor assigning the $Y(4274)$ and $X(4350)$ to be the $0^{++}$ or $2^{++}$ tetraquark states.", "revisions": [ { "version": "v1", "updated": "2015-02-13T03:22:08.000Z" } ], "analyses": { "subjects": [ "12.39.Mk", "12.38.Lg" ], "keywords": [ "tetraquark state candidates", "diquark-antidiquark type tetraquark state", "qcd sum rules", "qcd spectral densities", "operator product expansion" ], "tags": [ "journal article" ], "publication": { "journal": "International Journal of Modern Physics A", "year": 2015, "month": "Jan", "volume": 30, "number": 1, "pages": 1550004 }, "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "inspire": 1342655, "adsabs": "2015IJMPA..3050004W" } } }