{ "id": "1502.00937", "version": "v1", "published": "2015-02-03T17:33:26.000Z", "updated": "2015-02-03T17:33:26.000Z", "title": "Scattering in the energy space for the NLS with variable coefficients", "authors": [ "Biagio Cassano", "Piero D'Ancona" ], "categories": [ "math.AP" ], "abstract": "We consider the NLS with variable coefficients in dimension $n\\ge3$ \\begin{equation*} i \\partial_t u - Lu +f(u)=0, \\qquad Lv=\\nabla^{b}\\cdot(a(x)\\nabla^{b}v)-c(x)v, \\qquad \\nabla^{b}=\\nabla+ib(x), \\end{equation*} on $\\mathbb{R}^{n}$ or more generally on an exterior domain with Dirichlet boundary conditions, for a gauge invariant, defocusing nonlinearity of power type $f(u)\\simeq|u|^{\\gamma-1}u$. We assume that $L$ is a small, long range perturbation of $\\Delta$, plus a potential with a large positive part. The first main result of the paper is a bilinear smoothing (interaction Morawetz) estimate for the solution. As an application, under the conditional assumption that Strichartz estimates are valid for the linear flow $e^{itL}$, we prove global well posedness in the energy space for subcritical powers $\\gamma<1+\\frac{4}{n-2}$, and scattering provided $\\gamma>1+\\frac4n$. When the domain is $\\mathbb{R}^{n}$, by extending the Strichartz estimates due to Tataru [Tataru08], we prove that the conditional assumption is satisfied and deduce well posedness and scattering in the energy space.", "revisions": [ { "version": "v1", "updated": "2015-02-03T17:33:26.000Z" } ], "analyses": { "subjects": [ "35L70", "58J45" ], "keywords": [ "energy space", "variable coefficients", "scattering", "strichartz estimates", "conditional assumption" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150200937C" } } }