{ "id": "1412.3168", "version": "v1", "published": "2014-12-10T01:05:39.000Z", "updated": "2014-12-10T01:05:39.000Z", "title": "Some minimal elements for a partial order of prime knots", "authors": [ "Teruaki Kitano", "Masaaki Suzuki" ], "comment": "3 pages", "categories": [ "math.GT" ], "abstract": "A partial order on the set of prime knots can be defined by the existence of an epimorphism between knot groups. We prove that all the prime knots with up to $6$ crossings are minimal. We also show that each fibered knot with the irreducible Alexander polynomial is minimal.", "revisions": [ { "version": "v1", "updated": "2014-12-10T01:05:39.000Z" } ], "analyses": { "subjects": [ "57M27" ], "keywords": [ "prime knots", "partial order", "minimal elements", "knot groups", "irreducible alexander polynomial" ], "note": { "typesetting": "TeX", "pages": 3, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1412.3168K" } } }