{ "id": "1411.5405", "version": "v1", "published": "2014-11-19T23:49:52.000Z", "updated": "2014-11-19T23:49:52.000Z", "title": "Eigenvalues and Entropy of a Hitchin representation", "authors": [ "Rafael Potrie", "Andrés Sambarino" ], "comment": "29 pages, 4 figures", "categories": [ "math.GR", "math.DG" ], "abstract": "We show that the critical exponent of a representation in the Hitchin component of $PSL(d,\\mathbb{R})$ is bounded above, the least upper bound being attained only in the Fuchsian locus. This provides a rigid inequality for the area of a minimal surface on $\\rho\\backslash X,$ where $X$ is the symmetric space of $PSL(d,\\mathbb{R}).$ The proof relies in a construction useful to prove a regularity statement: if $\\rho$ belongs to the Hitchin component of $Psp(2k,\\mathbb{R}),$ $PSO(k,k+1)$ or $G_2,$ and its Frenet curve is smooth then $\\rho$ is Fuchsian.", "revisions": [ { "version": "v1", "updated": "2014-11-19T23:49:52.000Z" } ], "analyses": { "keywords": [ "hitchin representation", "eigenvalues", "hitchin component", "upper bound", "frenet curve" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1411.5405P" } } }