{ "id": "1411.0600", "version": "v1", "published": "2014-11-03T18:45:48.000Z", "updated": "2014-11-03T18:45:48.000Z", "title": "A boundary Schwarz Lemma for holomorphic mappings between unit balls of different dimensions", "authors": [ "Yang Liu", "Zhihua Chen", "Yifei Pan" ], "comment": "10 pages", "categories": [ "math.CV" ], "abstract": "In this paper, we give a general boundary Schwarz lemma for holomorphic mappings between unit balls in any dimensions. It is proved that if the mapping $f\\in C^{1+\\alpha}$ at $z_0\\in \\partial \\mathbb B^n$ with $f(z_0)=w_0\\in \\partial \\mathbb B^N$ for any $n,N\\geq 1$, then the Jacobian matrix $J_f(z_0)$ maps the tangent space $T_{z_0}(\\partial \\mathbb B^n)$ to $T_{w_0}(\\partial \\mathbb B^N)$, and the holomorphic tangent space $T^{(1,0)}_{z_0}(\\partial \\mathbb B^n)$ to $T^{(1,0)}_{w_0}(\\partial \\mathbb B^N)$ as well.", "revisions": [ { "version": "v1", "updated": "2014-11-03T18:45:48.000Z" } ], "analyses": { "subjects": [ "32H02", "30C80" ], "keywords": [ "holomorphic mappings", "unit balls", "dimensions", "general boundary schwarz lemma", "holomorphic tangent space" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }