{ "id": "1410.7892", "version": "v1", "published": "2014-10-29T07:48:54.000Z", "updated": "2014-10-29T07:48:54.000Z", "title": "Kloosterman paths and the shape of exponential sums", "authors": [ "Emmanuel Kowalski", "William F. Sawin" ], "comment": "27 pages, 3 figures", "categories": [ "math.NT", "math.PR" ], "abstract": "We consider the distribution of the polygonal paths joining partial sums of classical Kloosterman sums, as their parameter varies modulo a prime tending to infinity. Using independence of Kloosterman sheaves, we prove convergence in the sense of finite distributions to a specific random Fourier series. We also consider Birch sums, for which we can establish convergence in law in the space of continuous functions. We then derive some applications.", "revisions": [ { "version": "v1", "updated": "2014-10-29T07:48:54.000Z" } ], "analyses": { "subjects": [ "11T23", "11L05", "14F20", "60F17", "60G17", "60G50" ], "keywords": [ "exponential sums", "kloosterman paths", "polygonal paths joining partial sums", "specific random fourier series", "parameter varies modulo" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1410.7892K" } } }