{ "id": "1409.4345", "version": "v1", "published": "2014-09-15T17:41:39.000Z", "updated": "2014-09-15T17:41:39.000Z", "title": "On the equivalence of types", "authors": [ "E. Nart" ], "categories": [ "math.NT" ], "abstract": "Types over a discrete valued field $(K,v)$ are computational objects that parameterize certain families of monic irreducible polynomials in $K_v[x]$, where $K_v$ is the completion of $K$ at $v$. Two types are considered to be equivalent if they encode the same family of prime polynomials. In this paper, we characterize the equivalence of types in terms of certain data supported by them.", "revisions": [ { "version": "v1", "updated": "2014-09-15T17:41:39.000Z" } ], "analyses": { "keywords": [ "equivalence", "prime polynomials", "discrete valued field", "monic irreducible polynomials", "computational objects" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1409.4345N" } } }