{ "id": "1409.3177", "version": "v1", "published": "2014-09-10T18:30:08.000Z", "updated": "2014-09-10T18:30:08.000Z", "title": "Averages and moments associated to class numbers of imaginary quadratic fields", "authors": [ "D. R. Heath-Brown", "L. B. Pierce" ], "comment": "25 pages", "categories": [ "math.NT" ], "abstract": "For any odd prime $g$, let $h_g(-d)$ denote the $g$-part of the class number of the imaginary quadratic field $\\mathbb{Q}(\\sqrt{-d})$. Nontrivial pointwise upper bounds are known only for $g=3$; nontrivial upper bounds for averages of $h_g(-d)$ have previously been known only for $g=3,5$. In this paper we prove nontrivial upper bounds for the average of $h_g(-d)$ for all primes $g \\geq 7$, as well as nontrivial upper bounds for certain higher moments for all primes $g \\geq 3$.", "revisions": [ { "version": "v1", "updated": "2014-09-10T18:30:08.000Z" } ], "analyses": { "subjects": [ "11R29", "11D45" ], "keywords": [ "imaginary quadratic field", "class number", "nontrivial upper bounds", "nontrivial pointwise upper bounds" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1409.3177H" } } }