{ "id": "1408.6259", "version": "v1", "published": "2014-08-26T21:06:42.000Z", "updated": "2014-08-26T21:06:42.000Z", "title": "A conjecture on partitions of groups", "authors": [ "Igor Protasov", "Sergii Slobodianiuk" ], "categories": [ "math.GR" ], "abstract": "We conjecture that every infinite group $G$ can be partitioned into countably many cells $G=\\bigcup_{n\\in\\omega}A_n$ such that $cov(A_nA_n^{-1})=|G|$ for each $n\\in\\omega$. Here $cov(A)=\\min\\{|X|:X\\subseteq G, G=XA\\}$. We confirm this conjecture for each group of regular cardinality and for some groups (in particular, Abelian) of an arbitrary cardinality.", "revisions": [ { "version": "v1", "updated": "2014-08-26T21:06:42.000Z" } ], "analyses": { "subjects": [ "03E05", "20B07", "20F69" ], "keywords": [ "conjecture", "partitions", "infinite group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1408.6259P" } } }