{ "id": "1407.2656", "version": "v2", "published": "2014-07-09T23:42:09.000Z", "updated": "2015-09-15T02:29:27.000Z", "title": "The Error Term in the Sato-Tate Conjecture", "authors": [ "Jesse Thorner" ], "comment": "9 pages", "categories": [ "math.NT" ], "abstract": "Let $f(z)=\\sum_{n=1}^\\infty a(n)e^{2\\pi i nz}\\in S_k^{new}(\\Gamma_0(N))$ be a newform of even weight $k\\geq2$ that does not have complex multiplication. Then $a(n)\\in\\mathbb{R}$ for all $n$, so for any prime $p$, there exists $\\theta_p\\in[0,\\pi]$ such that $a(p)=2p^{(k-1)/2}\\cos(\\theta_p)$. Let $\\pi(x)=\\#\\{p\\leq x\\}$. For a given subinterval $I\\subset[0,\\pi]$, the now-proven Sato-Tate Conjecture tells us that as $x\\to\\infty$, \\[ \\#\\{p\\leq x:\\theta_p\\in I\\}\\sim \\mu_{ST}(I)\\pi(x),\\quad \\mu_{ST}(I)=\\int_{I} \\frac{2}{\\pi}\\sin^2(\\theta)~d\\theta. \\] Let $\\epsilon>0$. Assuming that the symmetric power $L$-functions of $f$ are automorphic, we prove that as $x\\to\\infty$, \\[ \\#\\{p\\leq x:\\theta_p\\in I\\}=\\mu_{ST}(I)\\pi(x)+O\\left(\\frac{x}{(\\log x)^{9/8-\\epsilon}}\\right), \\] where the implied constant is effectively computable and depends only on $k,N,$ and $\\epsilon$.", "revisions": [ { "version": "v1", "updated": "2014-07-09T23:42:09.000Z", "journal": null, "doi": null }, { "version": "v2", "updated": "2015-09-15T02:29:27.000Z" } ], "analyses": { "subjects": [ "11F30", "11M41" ], "keywords": [ "error term", "now-proven sato-tate conjecture tells", "complex multiplication", "symmetric power", "subinterval" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1407.2656T" } } }