{ "id": "1406.5951", "version": "v3", "published": "2014-06-23T15:51:08.000Z", "updated": "2015-04-27T16:44:27.000Z", "title": "Consecutive primes and Legendre symbols", "authors": [ "Hao Pan", "Zhi-Wei Sun" ], "comment": "11 pages. Refine the proof of Theorem 1.4", "categories": [ "math.NT" ], "abstract": "Let $m$ be any positive integer and let $\\delta_1,\\delta_2\\in\\{1,-1\\}$. We show that for some constanst $C_m>0$ there are infinitely many integers $n>1$ with $p_{n+m}-p_n\\le C_m$ such that $$\\left(\\frac{p_{n+i}}{p_{n+j}}\\right)=\\delta_1\\ \\quad\\text{and}\\ \\quad\\left(\\frac{p_{n+j}}{p_{n+i}}\\right)=\\delta_2$$ for all $0\\le i