{ "id": "1406.5908", "version": "v2", "published": "2014-06-23T14:02:18.000Z", "updated": "2014-06-25T15:47:26.000Z", "title": "Distortion of imbeddings of groups of intermediate growth into metric spaces", "authors": [ "Laurent Bartholdi", "Anna G. Erschler" ], "comment": "Used to appear as first half of arXiv:1403.5584", "categories": [ "math.GR" ], "abstract": "For every metric space $\\mathcal X$ in which there exists a sequence of finite groups of bounded-size generating set that does not embed coarsely, and for every unbounded, increasing function $\\rho$, we produce a group of subexponential word growth all of whose imbeddings in $\\mathcal X$ have distortion worse than $\\rho$. This applies in particular to any B-convex Banach space $\\mathcal X$, such as Hilbert space.", "revisions": [ { "version": "v2", "updated": "2014-06-25T15:47:26.000Z" } ], "analyses": { "keywords": [ "metric space", "intermediate growth", "imbeddings", "b-convex banach space", "subexponential word growth" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1406.5908B" } } }