{ "id": "1406.5462", "version": "v1", "published": "2014-06-20T17:09:50.000Z", "updated": "2014-06-20T17:09:50.000Z", "title": "Hilbert spaces and the pair correlation of zeros of the Riemann zeta-function", "authors": [ "Emanuel Carneiro", "Vorrapan Chandee", "Friedrich Littmann", "Micah B. Milinovich" ], "comment": "to appear in J. Reine Angew. Math", "categories": [ "math.NT", "math.CA" ], "abstract": "Montgomery's pair correlation conjecture predicts the asymptotic behavior of the function $N(T,\\beta)$ defined to be the number of pairs $\\gamma$ and $\\gamma'$ of ordinates of nontrivial zeros of the Riemann zeta-function satisfying $0<\\gamma,\\gamma'\\leq T$ and $0 < \\gamma'-\\gamma \\leq 2\\pi \\beta/\\log T$ as $T\\to \\infty$. In this paper, assuming the Riemann hypothesis, we prove upper and lower bounds for $N(T,\\beta)$, for all $\\beta >0$, using Montgomery's formula and some extremal functions of exponential type. These functions are optimal in the sense that they majorize and minorize the characteristic function of the interval $[-\\beta, \\beta]$ in a way to minimize the $L^1\\big(\\mathbb{R}, \\big\\{1 - \\big(\\frac{\\sin \\pi x}{\\pi x}\\big)^2 \\big\\}\\,dx\\big)$-error. We give a complete solution for this extremal problem using the framework of reproducing kernel Hilbert spaces of entire functions. This extends previous work by P. X. Gallagher in 1985, where the case $\\beta \\in \\frac12 \\mathbb{N}$ was considered using non-extremal majorants and minorants.", "revisions": [ { "version": "v1", "updated": "2014-06-20T17:09:50.000Z" } ], "analyses": { "subjects": [ "11M06", "11M26", "46E22", "41A30" ], "keywords": [ "riemann zeta-function", "montgomerys pair correlation conjecture predicts", "reproducing kernel hilbert spaces", "asymptotic behavior", "non-extremal majorants" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1406.5462C" } } }