{ "id": "1404.5258", "version": "v3", "published": "2014-04-21T18:05:22.000Z", "updated": "2015-11-12T13:40:00.000Z", "title": "Maximum-size antichains in random set-systems", "authors": [ "MaurĂ­cio Collares Neto", "Robert Morris" ], "comment": "14 pages, added important observation to the Introduction", "categories": [ "math.CO" ], "abstract": "We show that, for $pn \\to \\infty$, the largest set in a $p$-random sub-family of the power set of $\\{1, \\ldots, n\\}$ containing no $k$-chain has size $( k - 1 + o(1) ) p \\binom{n}{n/2}$ with high probability. This confirms a conjecture of Osthus, and has been proved independently by Balogh, Mycroft and Treglown.", "revisions": [ { "version": "v2", "updated": "2014-08-08T13:06:09.000Z", "title": "Maximum-size antichains in random sets", "abstract": "We show that, for $pn \\to \\infty$, the largest set in a $p$-random subset of the power set of $\\{1, \\ldots, n\\}$ containing no $k$-chain has size $( k - 1 + o(1) ) p \\binom{n}{n/2}$ with high probability. In the case $k = 2$, this confirms a conjecture of Osthus, and has been proved independently by Balogh, Mycroft and Treglown.", "comment": "13 pages, proof for general k", "journal": null, "doi": null }, { "version": "v3", "updated": "2015-11-12T13:40:00.000Z" } ], "analyses": { "keywords": [ "random sets", "maximum-size antichains", "power set", "largest set", "random subset" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1404.5258C" } } }