{ "id": "1403.7414", "version": "v1", "published": "2014-03-28T15:17:45.000Z", "updated": "2014-03-28T15:17:45.000Z", "title": "Groundstates of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent", "authors": [ "Vitaly Moroz", "Jean Van Schaftingen" ], "comment": "11 pages", "categories": [ "math.AP" ], "abstract": "We consider nonlinear Choquard equation $$ - \\Delta u + V u = \\bigl(I_\\alpha \\ast |u|^{\\frac{\\alpha}{N}+1}\\bigr) |u|^{\\frac{\\alpha}{N}-1} u\\quad\\text{in (\\mathbb{R}^N)},$$ where $N \\ge 3$, $V \\in L^\\infty (\\mathbb{R}^N)$ is an external potential and $I_\\alpha (x)$ is the Riesz potential of order $\\alpha \\in (0, N)$. The power $\\frac{\\alpha}{N}+1$ in the nonlocal part of the equation is critical with respect to the Hardy-Littlewood-Sobolev inequality. As a consequence, in the associated minimization problem a loss of compactness may occur. We prove that if $\\liminf_{|x| \\to \\infty} \\bigl(1 - V (x)\\bigr)|x|^2 > \\frac{N^2 (N - 2)}{4 (N + 1)}$ then the equation has a nontrivial solution. We also discuss some necessary conditions for the existence of a solution. Our considerations are based on a concentration compactness argument and a nonlocal version of Brezis-Lieb lemma.", "revisions": [ { "version": "v1", "updated": "2014-03-28T15:17:45.000Z" } ], "analyses": { "subjects": [ "35J20", "35B33", "35J91", "35J47", "35J50", "35Q55" ], "keywords": [ "nonlinear choquard equation", "hardy-littlewood-sobolev critical exponent", "groundstates", "concentration compactness argument", "riesz potential" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1403.7414M" } } }