arXiv Analytics

Sign in

arXiv:1403.5780 [cond-mat.quant-gas]AbstractReferencesReviewsResources

Effects of spin-orbit coupling on the Berezinskii-Kosterlitz-Thouless transition and the vortex-antivortex structure in two-dimensional Fermi gases

Jeroen P. A. Devreese, Jacques Tempere, Carlos A. R. Sá de Melo

Published 2014-03-23Version 1

We investigate the Berezinskii-Kosterlitz-Thouless (BKT) transition in a two-dimensional (2D) Fermi gas with spin-orbit coupling (SOC), as a function of the two-body binding energy and a perpendicular Zeeman field. By including a generic form of the SOC, as a function of Rashba and Dresselhaus terms, we study the evolution between the experimentally relevant equal Rashba-Dresselhaus (ERD) case and the Rashba-only (RO) case. We show that in the ERD case, at fixed non-zero Zeeman field, the BKT transition temperature $T_{BKT}$ is increased by the effect of SOC for all values of the binding energy. We also find a significant increase in the value of the Clogston limit compared to the case without SOC. Furthermore, we demonstrate that the superfluid density tensor becomes anisotropic (except in the RO case), leading to an anisotropic phase-fluctuation action that describes elliptic vortices and antivortices, which become circular in the RO limit. This deformation constitutes an important experimental signature for superfluidity in a 2D Fermi gas with ERD SOC. Finally, we show that the anisotropic sound velocities exhibit anomalies at low temperatures, in the vicinity of quantum phase transitions between topologically distinct uniform superfluid phases.

Related articles: Most relevant | Search more
Dynamic localization in optical and Zeeman lattices in the presence of spin-orbit coupling
arXiv:1110.6798 [cond-mat.quant-gas] (Published 2011-10-31)
Spin-Orbit Coupled Quantum Gases
arXiv:1412.5634 [cond-mat.quant-gas] (Published 2014-12-17)
Energy spectra of two interacting fermions with spin-orbit coupling in a harmonic trap