{ "id": "1402.4981", "version": "v3", "published": "2014-02-20T12:24:19.000Z", "updated": "2014-11-17T10:35:00.000Z", "title": "Centralizers of Subsystems of Fusion Systems", "authors": [ "Jason Semeraro" ], "comment": "9 pages", "categories": [ "math.GR" ], "abstract": "When $(S,\\mathcal{F},\\mathcal{L})$ is a $p$-local finite group and $(T,\\mathcal{E},\\mathcal{\\L}_0)$ is weakly normal in $(S,\\mathcal{F},\\mathcal{L})$ we show that a definition of $C_S(\\mathcal{E})$ given by Aschbacher has a simple interpretation from which one can deduce existence and strong closure very easily. We also appeal to a result of Gross to give a new proof that there is a unique fusion system $C_{\\mathcal{F}}(\\mathcal{E})$ on $C_S(\\mathcal{E})$.", "revisions": [ { "version": "v2", "updated": "2014-05-29T13:10:11.000Z", "title": "Centralisers of Subsystems of Fusion Systems", "abstract": "When $(S,\\mathcal{F},\\mathcal{L})$ is a $p$-local finite group and $(T,\\mathcal{E},\\mathcal{L}_0) \\unlhd (S,\\mathcal{F},\\mathcal{L})$ we define an $S$-centraliser $C_S(\\mathcal{L}_0)$ of $\\mathcal{L}_0$ in $S$ and observe that this is equivalent to a definition of $C_S(\\mathcal{E})$ given by Aschbacher. We also appeal to a result of Gross to give a new proof that there is a unique fusion system $C_{\\mathcal{F}}(\\mathcal{E})$ on $C_S(\\mathcal{E})$.", "comment": "11 pages", "journal": null, "doi": null }, { "version": "v3", "updated": "2014-11-17T10:35:00.000Z" } ], "analyses": { "keywords": [ "centralizers", "subsystems", "local finite group", "unique fusion system", "simple interpretation" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1402.4981S" } } }