{ "id": "1401.7402", "version": "v1", "published": "2014-01-29T03:23:53.000Z", "updated": "2014-01-29T03:23:53.000Z", "title": "A Liouville Theorem for the Fractional Laplacian", "authors": [ "Ran Zhuo", "Wenxiong Chen", "Xuewei Cui", "Zixia Yuan" ], "comment": "14 pages", "categories": [ "math.AP" ], "abstract": "We extend the classical Liouville Theorem from Laplacian to the fractional Laplacian, that is, we prove Every $\\alpha$-harmonic function bounded either above or below in all of $R^n$ must be constant.", "revisions": [ { "version": "v1", "updated": "2014-01-29T03:23:53.000Z" } ], "analyses": { "subjects": [ "35J61", "35S05", "45K05" ], "keywords": [ "fractional laplacian", "classical liouville theorem", "harmonic function" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1401.7402Z" } } }