{ "id": "1401.6480", "version": "v3", "published": "2014-01-25T00:46:28.000Z", "updated": "2015-04-12T08:36:56.000Z", "title": "A new proof of Savin's theorem on Allen-Cahn equations", "authors": [ "Kelei Wang" ], "comment": "59 pages. Comments are welcome", "categories": [ "math.AP" ], "abstract": "In this paper we establish an improvement of tilt-excess decay estimate for the Allen-Cahn equation, and use this to give a new proof of Savin's theorem on the uniform $C^{1,\\alpha}$ regularity of flat level sets, which then implies the one dimensional symmetry of minimizers in $\\mathbb{R}^n$ for $n\\leq 7$. This generalizes Allard's $\\varepsilon$-regularity theorem for stationary varifolds to the setting of Allen-Cahn equations.", "revisions": [ { "version": "v1", "updated": "2014-01-25T00:46:28.000Z", "comment": "56 pages. Comments are welcome", "journal": null, "doi": null }, { "version": "v2", "updated": "2014-10-26T05:22:01.000Z", "comment": "57 pages. Comments are welcome", "journal": null, "doi": null }, { "version": "v3", "updated": "2015-04-12T08:36:56.000Z" } ], "analyses": { "subjects": [ "35B06", "35B06", "35B08", "35B25", "35J91" ], "keywords": [ "allen-cahn equation", "savins theorem", "tilt-excess decay estimate", "flat level sets", "stationary varifolds" ], "note": { "typesetting": "TeX", "pages": 59, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1401.6480W" } } }