{ "id": "1401.2366", "version": "v1", "published": "2014-01-09T10:44:36.000Z", "updated": "2014-01-09T10:44:36.000Z", "title": "On a form of degree $d$ in $2d+1$ variables ($d\\geq 4$)", "authors": [ "Manoj Verma" ], "comment": "12 pages", "categories": [ "math.NT" ], "abstract": "For $k\\geq 2$, we derive an asymptotic formula for the number of zeros of the forms $\\prod_{i=1}^{k}(x_{2i-1}^2+x_{2i}^2)+\\prod_{i=1}^{k}(x_{2k+2i-1}^2+x_{2k+2i}^2)-x_{4k+1}^{2k}$ and $x_1\\prod_{i=1}^{k}(x_{2i}^2+x_{2i+1}^2)+x_{2k+2}\\prod_{i=1}^{k}(x_{2k+2i+1}^2+x_{2k+2i+2}^2)-x_{4k+3}^{2k+1}$ in the box $1\\leq x_i\\leq P$ using the circle method.", "revisions": [ { "version": "v1", "updated": "2014-01-09T10:44:36.000Z" } ], "analyses": { "subjects": [ "11D45", "11D85", "11P55" ], "keywords": [ "asymptotic formula", "circle method" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1401.2366V" } } }