{ "id": "1312.6498", "version": "v1", "published": "2013-12-23T09:48:50.000Z", "updated": "2013-12-23T09:48:50.000Z", "title": "Kato's inequality when $Δu$ is a measure", "authors": [ "Haïm Brezis", "Augusto C. Ponce" ], "journal": "C. R. Acad. Sci. Paris, Ser. I 338 (2004), 599--604", "categories": [ "math.AP" ], "abstract": "We extend the classical Kato's inequality in order to allow functions $u \\in L^1_\\mathrm{loc}$ such that $\\Delta u$ is a Radon measure. This inequality has been applied by Brezis, Marcus, and Ponce to study the existence of solutions of the nonlinear equation $- \\Delta u + g(u) = \\mu$, where $\\mu$ is a measure and $g : \\mathbb{R} \\to \\mathbb{R}$ is an increasing continuous function.", "revisions": [ { "version": "v1", "updated": "2013-12-23T09:48:50.000Z" } ], "analyses": { "keywords": [ "nonlinear equation", "classical katos inequality", "radon measure", "increasing continuous function" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1312.6498B" } } }